
978-1-5386-3368-7/17/$31.00 ©2017 IEEE

Online Cross-Calibration of Camera and LIDAR

Bianca-Cerasela-Zelia Blaga, Sergiu Nedevschi
Computer Science Department

Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

Abstract — In an autonomous driving system, drift can affect
the sensor’s position, introducing errors in the extrinsic
calibration. For this reason, we have developed a method which
continuously monitors two sensors, camera, and LIDAR with 16
beams, and adjusts the value of their cross-calibration. Our
algorithm, starting from correct values of the extrinsic cross-
calibration parameters, can detect small sensor drift during
vehicle driving, by overlapping the edges from the LIDAR over
the edges from the image. The novelty of our method is that in
order to obtain edges, we create a range image and filter the data
from the 3D point cloud, and we use distance transform on 2D
images to find edges. Another improvement we bring is applying
motion correction on laser scanner data to remove distortions
that appear during vehicle motion. An optimization problem on
the 6 calibration parameters is defined, from which we are able
to obtain the best value of the cross-calibration, and readjust it
automatically. Our system performs successfully in real time, in
a wide variety of scenarios, and is not affected by the speed of
the car.

Keywords— cross-calibration, camera, LIDAR, laser range
finder, edge detection, autonomous driving.

I. INTRODUCTION

Today, autonomous vehicles use a large variety of sensors
to navigate in an environment. We want to enhance 2D
images with the depth information provided by laser range
finders, and add color data taken from cameras to 3D point
clouds. Sensor fusion can form the foundation of developing
further complex functionalities such as pedestrian detection,
traffic signs recognition, and localization and mapping. For
this, we need to know how the sensors relate to each other
and the world. There are two types of calibrations: intrinsic
and extrinsic. The intrinsic parameters of a camera are the
focal length, optical center, skew coefficient, and distortion
coefficient, while the internal parameters of a LIDAR are the
elevation angles of the laser scanners, azimuth angle, and
reflectivity. Factory settings can be used for mono-cameras,
and LIDARs, but sometimes corrections need to be applied
to laser range finders. [1] and [2] offer detailed explanations
of the internal structure of a laser scanner – more specifically
Velodyne HDL-64E, showing how the laser beams are
situated, and employing a least-squares method for initial
estimation and refinement.

The extrinsic calibration parameters give the orientation
between the sensor and the object we take the measurements
from. The location of cameras and laser scanners in the world
can be determined if we know the 6 DOF transformations

Figure 1. An example of miss-calibration detection and correction

from the coordinate system of the specific sensor to the 3D
world coordinate system. The extrinsic matrix is composed
of a 3x3 rotation matrix and a 3-dimensional translation
vector. In data fusion, alignment between sensors’ rotation
and translation represents a problem to be solved. As Lili
Huang states in [3], three approaches for LIDAR and camera
calibration are: Visible Beam Calibration – observing the
LIDAR beams or reflected points (needs infrared cameras),
3D LIDAR based calibration – uses corners or edges of
specific calibration objects to obtain a relationship between
the two types of representations, and 2D-planar based
calibration – observing a plane of an object and solving
distance constraints from the camera and LIDAR. A method
that falls in the third category is [4], which consists in using
a checkboard observed by both sensors at the same time, in
different positions and orientations, and estimating the
coefficients using a least-squares method.

Many methods use a calibration target seen by both
sensors at the same time to find the cross-calibration: [5] uses
a black circle as pattern, solving the alignment between the
normals of the planes obtained from the detected ellipse in
the 2D image and by the laser scanner; in[6], a vertical wall
and a checkerboard pattern are used to solve a linear
optimization problem using Levenberg-Marquardt algorithm;
[7] uses triangular targets that are detected in both images and
3D point clouds, and the cross-calibration is obtained using
the Levenberg-Marquardt optimization algorithm, [8] utilizes
a dark circle with empty interior, exploiting the reflectivity
information from laser scanners; in [9] a checkerboard
pattern and planar markers with different geometrical shaped
holes are detected in both camera and LIDAR are correlated.

The drawback of most methods is that they use a specific
object, that is not available if we want to recalibrate, and they
are time-consuming. The most obvious choice of features that
appear in both images and 3D point clouds are the edges. In
paper [10], the edges are matched using a weighted total

295

variation norm extracted from the fused depth image. [11]
and [12] present different methods to detect sharp features in
a point cloud based on Gauss map clustering, which can be
further used to align the camera and the LIDAR.

The problem of most calibration methods is that they
cannot be applied for real time computer vision. In
autonomous driving, having a fixed calibration is not a safe
solution, as sensor drift can occur. Due to the interaction with
the environment, the camera or the LIDAR can change their
positions, making the cross-calibration improper. This can
affect the accurate functioning of the system. To correct this,
recalibration is needed, but it is not feasible, as it is time-
consuming and needs a specific environment. Therefore, it
appears the need for online calibration, which can monitor
and refine the extrinsic parameters during normal vehicle
functioning conditions. In paper [13], the road, which is a flat
surface, and an obstacle seen by both sensors are used to
cross-calibrate the rotation between a stereo-camera and a
laser scanner using MSAC to find the road plane and solving
alignment between the point clouds obtained from both
sensors. In [14], a fully automatic method for extrinsic
calibration based on SLAM is presented. The system is
composed of multi cameras fixed on a rotating rig, with little
to no overlapping FOV, and requires no patterns. [15]
presents a method to automatically calibrate the extrinsic
parameters of a camera by using epipolar geometry. The
epipoles are used for a mono camera in a similar way they are
used in stereo: by matching feature points from 2 consecutive
shots. In [16], the goal is to detect in real-time the miss-
calibration between camera and LIDAR by superimposing
edges from images and laser scanner. [17] uses the Renyi
Quadratic Entropy to estimate the position of the sensors
related to the vehicle frame.

Our aim in this paper is to present an online cross-
calibration system, that is able to correct miss-calibrations
during normal functioning of a vehicle. The rest of the paper
is structured as follows: Section II presents the overall system
design. Sections III, IV and V present the edge detection
algorithm for camera and LIDAR and the online cross-
calibration method. Section VII presents how the extrinsic
LIDAR calibration can be obtained. The last two sections are
dedicated to experimental results and conclusions.

II. SYSTEM DESIGN FOR ONLINE CROSS-CALIBRATION

Figure 2 illustrates the flow of the online cross-calibration
algorithm. We first start with known cross-calibration
parameters obtained from an offline method such as [4] or
[18]. Next, as long as we have frames, we repeat a series of
steps. First, detect edges from the 2D images using distance
transform. Second, apply motion correction on LIDAR data
to correct the representation of 3D points and eliminate errors
caused by the speed of the car. Afterward, obtain a range
image from the laser scanner, that will be further used to
detect edges from the LIDAR data. The last step is to apply
the online calibration algorithm – vary the 6 extrinsic
parameters, translation on the 3 axes and rotation around x, y,
and z axes. If we obtain a better value of the cost function, we

update the cross-calibration parameters, if not, we continue
with the same values, and repeat the steps.

Figure 2. Design of the Online Cross-Calibration system

Temporal synchronization between the two sensors is
achieved by taking into reference the timestamps that the
measurements get from the camera, the laser scanner, and the
GPS. We use interpolation to obtain the exact image frame
for the current point cloud, considering the time differences
between consecutive frames.

The offline cross-calibration between laser scanner and
camera is found by placing a checkerboard calibration pattern
in front of the camera and laser scanner in multiple positions
and orientations. We can find the normal of the plane pattern
in the images using Bouguet’s “Camera Calibration
Toolbox”[19], by selecting multiple corner points from the
checkerboard plane. To find the normal in the LIDAR
dataset, we apply an RANSAC plane fitting procedure. These
are used to solve a least square minimization problem to find
the cross-calibration parameters, which are further refined
using the Levenberg-Marquardt method. Details about this
procedure can be found in [4].

What we bring new to the online cross-calibration,
compared to existing methods, is the motion correction
method. To understand this concept visually, think of a point
cloud as being circular. In most algorithms or methods that
use laser scanner data, all the points from a full point cloud

296

are considered to have been taken at the same moment, which
is not true. In applications that require high accuracy, such as
the problem of calibration, this preconception introduces
important errors that render the system incapable of
functioning. By applying a motion correction algorithm, the
time stamp of each point is taken into consideration to adjust
the position of the corresponding point, shifting points that
have been taken at a later time forward. Thus, the dataset will
no longer be a circle, but rather a spiral, with points from the
beginning to the end having the same timestamp. We use the
VICP algorithm [20] to correct the distortions from the laser
scanner measurements, that appear due to the motion of the
car or objects moving in the scene.

In our method, we have two systems working together:
the offline cross-calibration and the online cross-calibration.
The first one is mandatory to find the initial calibration
parameters, when the sensors are first placed on the car, and
it is done only once. These initial values are used as input to
the second system, which will run at all times during car
driving since sensors can drift during the interaction with the
surrounding environment. It is important to note that if the
sensors’ position on the vehicle changes, we have to
recalibrate using the offline method first, then monitor the
calibration with the online method. We focus on the online
cross-calibration system, with details about its
implementation being presented in the next sections.

III. CAMERA EDGE DETECTION

In this section, we focus on the edge detection algorithm
for 2D images, which is the distance transform. The result of
the transform is a grayscale image that looks similar to the
input image, except that the intensities of points are changed
to show the distance to the closest boundary from each
point[21].

We first obtain a grayscale image, in which each pixel
takes the maximum value between the difference between it
and its 8 neighbors. Next, we used the Chamfer based
distance transform method, which requires scanning the
binary image from two sides, making the computation very
fast. The main steps of the algorithm are:

1. Choose a 3x3 mask which is further decomposed into
two parts:

2. A double scan (first top-down, left-right and second
bottom-up, right-left) of the image (Figure 3), using
the previous masks, is required to update the distance
on the DT image.

First perform an initialization step, in which we
compute the edges by updating each pixel to the
maximum value between the difference between the
current pixel and its 8 neighbors. Then we apply the
update:

Figure 3. Double scan using the decomposed mask

����� �� 	
 ��
��������������� � �� � � �� � ��������� ��� (1)

where ��������� ��
is wHV if the direction (k,l) is
horizontal or vertical from the center of the mask, or
wD if the direction is diagonal. The relationship
between the 2 values should be �� 	 ��� � � ; in
our implementation, we use the values wD= 7 and
wHV= 5, because they give better visual results, as it
can be seen in Figure 4.

Figure 4. Distance Transform image result

IV. LIDAR EDGE DETECTION

For detecting edges in 3D point clouds obtained from
LIDAR readings, we follow two steps. The first step is to
obtain the range image, which is a 2D representation of the
laser scanner points with depth information. We use [22] to
obtain the range image, denoted with !, which contains
information about the point coordinates and the range data.

 On the range image, we apply the second step, which is a
filtering of points based on depth discontinuities. We denote
a point from LIDAR with ", and its left and right neighbors
with "�#$%, respectively "&'()%. We obtain the edges by taking
into consideration the depth of the points and the relationship
between neighbors as follows. The difference between
neighbors is the maximum value of their depth discontinuity: * 	 �+,�"�#$% - "� "&'()% - "� .�/ (2)

where 0 	 .121 Next, we filter after the depth of each
point:

297

31 456�� 	 7 -8� �9
! : ;
56< =>?�!@1AB� C *-8� �9
 =>?�!@1D� C *

*� E���4��F�

 (3)

Where E is the new point cloud, composed of points that
are situated on edges in the original 3D data. The values of
0.26 and 0.5 were obtained after measurements, and are
specific for the sensors we use in our system. The filtering
after depth in 3D data is needed because, if we take into
consideration only the neighbors, there would be a high
density of edges at big distances, but the information from
images is not detailed enough to be relevant.

V. ONLINE CALIBRATION
Given a cross-calibration matrix, we can project the laser

points from the edge point cloud to the edge image, using the
principles of pinhole camera projection. These projections
will be used to infer a cost function which exploits the fact
that we have a correct calibration if the edges from the
LIDAR are correctly superimposed over edges from the
image. We take the cost function as being the sum of the
product between the information from the edges over the last
w frames.

G 	
 H HI��' � 3'1 456��

�J�K
'LM

$
NL$OP

Where f denotes the current frame number, w is the
number of frames used (window size), N is the number of
projected LIDAR points on the 2D image, DT is the edge
image, and E is the edge point cloud, from which we take
only the current point with the range information.

In order to determine the best calibration, we vary the 6
parameters in the following way: we decrease them with a
value, we let them constant, or we increase them with a value.
Therefore, we will compute 729 values of the cost function,
from which we will choose the maximum as being the best
value of the calibration. The cost function is guaranteed to
converge only if there is a small perturbation of the 6
parameters, depending on the density of data provided by the
laser scanner. When we obtain a better value for the cost, we
update the calibration.

The cost function will be optimized only if we start from
correct cross-calibration parameter values, otherwise, it will
never reach the optimum value. Therefore, we need a way to
know when to stop updating if the new values only worsen
the cross-calibration. A method would be to observe how the
cost function changes when the 6 parameters are varied, for
all possible variations. We use the miss-calibration detection
from [16], which builds a Gaussian probability distribution
over the varied values of the calibrations, and updates the 6
cross-calibration parameters only when the probability of
being correct is higher than a given threshold. This ensures
that, when the two sensors are severely miss-aligned, the
values of the calibration parameters will not be updated.

Figure 5. Projection of LIDAR points on grayscale image obtained
from the camera

Figure 6. Edges from LIDAR data projected on edges obtained
applying distance transform

VI. LIDAR EXTRINSIC CALIBRATION

In our system, the calibration parameters can be generally
denoted as Q�& 	 RS�&� T�&� U�&� V�&� W�&� 0�&X, where s represents
the sensor, camera or LIDAR, and r is the reference
coordinate system. The first 3 represent the translation vector,
while the last 3 are used to compose the 3x3 rotation matrix.

The camera has an intrinsic calibration matrix, composed
of a rotation matrix and a translation vector, denoted:

YZ' 	 [!Z' �Z'
. . . \] (5)

where YZ' means the transformation from camera
coordinates to world coordinates, !Z' is the rotation matrix,
and �Z' is the translation matrix.

After applying the offline calibration algorithm, we
obtain an extrinsic calibration matrix, which transforms
points from camera coordinates to world coordinates, and is
denoted as:

298

YẐ 	 [!Ẑ �Ẑ
. . . \] (6)

After applying the cross-calibration, we obtain the
transformation between laser scanner and camera,
transferring the points from the LIDAR coordinate system in
the coordinate system of the camera.

Y_Z 	 [!_Z �_Z
. . . \] (7)

We can obtain the extrinsic calibration matrix of the
LIDAR relative to the world coordinate system: Y_̂ 	 YẐ � Y_Z (8)

Therefore, if we know the extrinsic matrix of the camera
relative to the world, and the extrinsic cross-calibration
between the laser scanner and the camera, we can find the
extrinsic calibration between the LIDAR and the world.

VII. EXPERIMENTAL RESULTS

Our system is developed in C++, using the following
libraries: PCL (Point Cloud Library), OpenCV, Boost, Qt,
and Eigen. The hardware on which we ran the tests is Intel
x64 processor, with the frequency of 4 GHz, and 64 GB RAM
memory. The operating system is Windows 10.

As sensors, we use a Velodyne VLP-16 sensor with 16
layers of data oriented between -15 and +15 degrees
vertically, covering a vertical field of view of 30 degrees. The
sensor covers a 360-degree horizontal FOV, while spinning
at 10 Hz, and provides 300.000 points per second. It can
cover a distance up to 100m, with an error of -/+3cm. The
camera is JAI BM 141GE, that gives monochrome images.
The coordinate systems of the world and the two sensors have
the z-axis pointing forward, the x-axis – to the right and the
y-axis – to the ground.

We performed experiments to determine the speed and
accuracy of our algorithm. The algorithm running time is
between 16ms for one frame and 90ms for 9 frames, the most
time-consuming part being the grid search step. To track the
miss-calibration correction, we have randomly altered the 6
extrinsic calibration parameters with noise, and compared the
obtained values with the ground truth cross-calibration,
which is known from the offline algorithm. Each translation
parameter was modified with values between 1 and 2cm, and
each rotation value was altered with up to 2 degrees, which
are quite noticeable. Higher offsets would lead to having a
low probability that the calibration is correct, which is
computed in the miss-calibration step, therefore they would
not be updated and the car should be stopped. The
experiments were performed on a 1.900 frame log, in which
we have variation in the speed of the car, pedestrians moving,
and cars coming from the opposite direction. As metrics, we
use the Mean Squared Error (MSE) between the values of the
cross-calibration obtained from the offline method, which is
considered the ground truth, and the values obtained from the
online cross-calibration method.

From the plots with the variations of the 3 translation
parameters and 3 rotation parameters, we can observe the
errors we obtain for each of the 6 cross-calibration parameters
when we vary the number of frames. The biggest variations
can be observed for the translation on the z-axis and for the �
angle, from which we can notice where we obtain high or low

0.000
0.005
0.010
0.015
0.020
0.025

1 2 3 4 5 6 7 8 9

er
ro

r

no. frames

x translation variation

0.000

0.005

0.010

0.015

1 2 3 4 5 6 7 8 9

er
ro

r
no. frames

y translation variation

0.000

0.002

0.004

0.006

0.008

1 2 3 4 5 6 7 8 9

er
ro

r

no. frames

z translation variation

0.000
0.005
0.010
0.015
0.020
0.025

1 2 3 4 5 6 7 8 9

er
ro

r

no. frames

� variation

299

errors, depending on the window size. This was used to
decide on the optimal number of frames to be applied to the
online cross-calibration algorithm, in such a way that the
error between the ground truth and the refined result is
minimized.

The error decreases when using more frames, the lowest
error of 0.007 being obtained when having a window of 9
frames, as seen in the plot of MSE. The only downside is the
computation time, which is quite high for such an application.
Therefore, we choose to use 4 as the number of frames for the
online cross-calibration algorithm, because it gives a low
error and the average computation time is 30ms.

In Figure 7, the 3D points obtained from the laser scanner
are projected onto the 2D image, with noise added to the
cross-calibration between the camera and the LIDAR. After
applying our online cross-calibration algorithm, we can
successfully refine the calibration parameters and correct
them; the result can be seen in Figure 8.

Figure 7. Miss-calibrated projection of LIDAR data on image

Figure 8. Corrected cross-calibration and projection of LIDAR
data on image

In Table 1, from the results obtained in the miss-
calibration tracking, it can be seen that our implementation
has a higher degree of accuracy than other existing methods.
We don’t obtain an improvement when refining the
translation on the y-axis, which is vertical because the laser
scanner we use has only 16 layers; this gives a low density of
points on the vertical edges, compared to the information
obtained from edges in an image, which is dense.

Table 1. Online cross-calibration results

Paper
Translation (m) Rotation (degrees)

x y z � � �
[23] 0.0045 0.0052 0.0046 0.38 0.39 0.44
[16] 0.02 0.014 0.006 0.672 0.628 0.476
[6] 0.305 -0.005 -0.426 -0.15 0 0.27
Our

system 0.002 0.015 -0.005 -0.016 0.002 0.01

0.000

0.005

0.010

0.015

0.020

1 2 3 4 5 6 7 8 9

er
ro

r

no. frames

� variation

0.000

0.005

0.010

0.015

1 2 3 4 5 6 7 8 9

er
ro

r

no. frames

� variation

0.000

0.005

0.010

0.015

1 2 3 4 5 6 7 8 9

er
ro

r

no. frames

Total MSE

300

The cross-calibration algorithm can also be used to refine
the results of an offline calibration algorithm, even when the
sensors’ position doesn’t change, being able to correct small
mistakes. In Figure 9, we have plotted the errors between the
online and offline cross-calibration methods, when no noise
has been added to the sensors’ readings. The offline method
has high errors for two rotation parameters, which are
corrected with the online method.

Figure 9. Offline cross-calibration correction

VIII. CONCLUSIONS

This work presents a new online solution for the cross-
calibration of camera and LIDAR. Our system can detect
miss-calibrations if sensor drift occurs during vehicle
functioning. We are able to correct the cross-calibration
between the camera and LIDAR, and also extract the
extrinsic calibration parameters of LIDAR. We have obtained
better results than previous existing cross-calibration
methods, as seen in section VII because the most important
improvement we bring is the usage of a motion correction
algorithm, which eliminates distortions from the laser
scanner that come from vehicle motion or objects moving in
the scene. We also create a range image that is an organized
representation of the 3D point cloud. By fusing the two
sensors, camera, and LIDAR, we obtain a 2D image
containing range information. The experimental results
demonstrate that our solution is able to run in real time, which
makes our online cross-calibration algorithm a convenient
component of a driving assistance solution.

ACKNOWLEDGMENT
This work was supported by the MULTISPECT grant

(Multispectral environment perception by fusion of 2D and
3D sensorial data from the visible and infrared spectrum) of
UEFISCDI, project code PN-III-P4-ID-PCE-2016-0727,
contract number 60/2017.

This work was also supported by the EU H2020 project,
UP-Drive under grant nr. 688652.

REFERENCES
[1] F. M. Mirzaei, D. G. Kottas, and S. I. Roumeliotis, "3D LIDAR-

camera intrinsic and extrinsic calibration: Identifiability and analytical
least-squares-based initialization," Int. J. Rob. Res., vol. 31, pp. 452-
467, 2012.

[2] C. Glennie and D. D. Lichti, "Static Calibration and Analysis of the
Velodyne HDL-64E S2 for High Accuracy Mobile Scanning," Remote
Sensing, vol. 2, p. 1610, 2010.

[3] L. Huang, "Lidar, camera and inertial sensors based navigation
techniques for advanced intelligent transportation systems,"
University of California, Riverside, 2010.

[4] L. Huang and M. Barth, "A novel multi-planar LIDAR and computer
vision calibration procedure using 2D patterns for automated
navigation," in 2009 IEEE Intelligent Vehicles Symposium, 2009, pp.
117-122.

[5] H. Alismail, L. D. Baker, and B. Browning, "Automatic Calibration
of a Range Sensor and Camera System," in 2012 Second International
Conference on 3D Imaging, Modeling, Processing, Visualization &
Transmission, 2012, pp. 286-292.

[6] G. Pandey, J. McBride, S. Savarese, and R. Eustice, "Extrinsic
Calibration of a 3D Laser Scanner and an Omnidirectional Camera,"
presented at the 7th IFAC Symposium on Intelligent Autonomous
Vehicles, IAV 2010 - Proceedings, 2010.

[7] S. Debattisti, L. Mazzei, and M. Panciroli, "Automated extrinsic laser
and camera inter-calibration using triangular targets," in 2013 IEEE
Intelligent Vehicles Symposium (IV), 2013, pp. 696-701.

[8] S. A. R. F, V. Fremont, and P. Bonnifait, "Extrinsic calibration
between a multi-layer lidar and a camera," in 2008 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent
Systems, 2008, pp. 214-219.

[9] M. Velas, M. Spanel, Z. Materna, and A. Herout, "Calibration of RGB
camera With Velodyne LiDAR," WSCG 2014 Communication Papers
Proceedings, pp. 135-144, 2014.

[10] J. Castorena, U. S. Kamilov, and P. T. Boufounos, "Autocalibration
of lidar and optical cameras via edge alignment," in 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2016, pp. 2862-2866.

[11] S. Sim, J. Sock, and K. Kwak, "Indirect Correspondence-Based
Robust Extrinsic Calibration of LiDAR and Camera," Sensors, vol.
16, p. 933, 2016.

[12] C. Weber, S. Hahmann, and H. Hagen, "Sharp Feature Detection in
Point Clouds," presented at the Proceedings of the 2010 Shape
Modeling International Conference, 2010.

[13] C. H. Rodríguez-Garavito, A. Ponz, F. García, D. Martín, A. d. l.
Escalera, and J. M. Armingol, "Automatic laser and camera extrinsic
calibration for data fusion using road plane," in 17th International
Conference on Information Fusion (FUSION), 2014, pp. 1-6.

[14] G. Carrera, A. Angeli, and A. J. Davison, "SLAM-based automatic
extrinsic calibration of a multi-camera rig," in 2011 IEEE
International Conference on Robotics and Automation, 2011, pp.
2652-2659.

[15] M. Miksch, B. Yang, and K. Zimmermann, "Automatic extrinsic
camera self-calibration based on homography and epipolar geometry,"
in 2010 IEEE Intelligent Vehicles Symposium, 2010, pp. 832-839.

[16] J. Levinson and S. Thrun, "Automatic Online Calibration of Cameras
and Lasers," International Symposium on Experimental Robotics
(ISER), 2013.

[17] W. Maddern, A. Harrison, and P. Newman, "Lost in translation (and
rotation): Rapid extrinsic calibration for 2D and 3D LIDARs," in 2012
IEEE International Conference on Robotics and Automation, 2012,
pp. 3096-3102.

[18] G. Atanacio-Jiménez, J.-J. González-Barbosa, J. B. Hurtado-Ramos,
F. J. Ornelas-Rodríguez, H. Jiménez-Hernández, T. García-Ramirez,
et al., "LIDAR Velodyne HDL-64E Calibration Using Pattern
Planes," International Journal of Advanced Robotic Systems, vol. 8,
p. 59, 2011.

[19] J.-Y. Bouguet, "Camera Calibration Toolbox for Matlab," 2003.
[20] S. Hong, H. Ko, and J. Kim, "VICP: Velocity updating iterative

closest point algorithm," in 2010 IEEE International Conference on
Robotics and Automation, 2010, pp. 1893-1898.

[21] S. Nedevschi. Distance Transform (DT). Pattern Matching using DT.
Available: http://users.utcluj.ro/~nedevschi/PR/labs/prs_lab_04e.pdf

[22] D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, and S. Behnke,
"Registration with the Point Cloud Library: A Modular Framework
for Aligning in 3-D," IEEE Robotics & Automation Magazine, vol.
22, pp. 110-124, 2015.

[23] A. Napier, P. Corke, and P. Newman, "Cross-calibration of push-
broom 2D LIDARs and cameras in natural scenes," in 2013 IEEE
International Conference on Robotics and Automation, 2013, pp.
3679-3684.

0.000

0.002

0.004

0.006

0.008

x y z � � �

er
ro

r

cros-calibration parameters

Online correction

301

