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Abstract — In an autonomous driving system, drift can affect 
the sensor’s position, introducing errors in the extrinsic 
calibration. For this reason, we have developed a method which 
continuously monitors two sensors, camera, and LIDAR with 16 
beams, and adjusts the value of their cross-calibration. Our 
algorithm, starting from correct values of the extrinsic cross-
calibration parameters, can detect small sensor drift during 
vehicle driving, by overlapping the edges from the LIDAR over 
the edges from the image. The novelty of our method is that in 
order to obtain edges, we create a range image and filter the data 
from the 3D point cloud, and we use distance transform on 2D 
images to find edges. Another improvement we bring is applying 
motion correction on laser scanner data to remove distortions 
that appear during vehicle motion. An optimization problem on 
the 6 calibration parameters is defined, from which we are able 
to obtain the best value of the cross-calibration, and readjust it 
automatically. Our system performs successfully in real time, in 
a wide variety of scenarios, and is not affected by the speed of 
the car.  

Keywords— cross-calibration, camera, LIDAR, laser range 
finder, edge detection, autonomous driving.  

I.  INTRODUCTION 

Today, autonomous vehicles use a large variety of sensors 
to navigate in an environment. We want to enhance 2D 
images with the depth information provided by laser range 
finders, and add color data taken from cameras to 3D point 
clouds. Sensor fusion can form the foundation of developing 
further complex functionalities such as pedestrian detection, 
traffic signs recognition, and localization and mapping. For 
this, we need to know how the sensors relate to each other 
and the world. There are two types of calibrations: intrinsic 
and extrinsic. The intrinsic parameters of a camera are the 
focal length, optical center, skew coefficient, and distortion 
coefficient, while the internal parameters of a LIDAR are the 
elevation angles of the laser scanners, azimuth angle, and 
reflectivity. Factory settings can be used for mono-cameras, 
and LIDARs, but sometimes corrections need to be applied 
to laser range finders. [1] and [2] offer detailed explanations 
of the internal structure of a laser scanner – more specifically 
Velodyne HDL-64E, showing how the laser beams are 
situated, and employing a least-squares method for initial 
estimation and refinement.  

The extrinsic calibration parameters give the orientation 
between the sensor and the object we take the measurements 
from. The location of cameras and laser scanners in the world 
can be determined if we know the 6 DOF transformations  

Figure 1. An example of miss-calibration detection and correction 

from the coordinate system of the specific sensor to the 3D 
world coordinate system. The extrinsic matrix is composed  
of a 3x3 rotation matrix and a 3-dimensional translation 
vector. In data fusion, alignment between sensors’ rotation 
and translation represents a problem to be solved. As Lili 
Huang states in [3], three approaches for LIDAR and camera 
calibration are: Visible Beam Calibration – observing the 
LIDAR beams or reflected points (needs infrared cameras), 
3D LIDAR based calibration – uses corners or edges of 
specific calibration objects to obtain a relationship between 
the two types of representations, and 2D-planar based 
calibration – observing a plane of an object and solving 
distance constraints from the camera and LIDAR. A method 
that falls in the third category is [4], which consists in using 
a checkboard observed by both sensors at the same time, in 
different positions and orientations, and estimating the 
coefficients using a least-squares method.  

Many methods use a calibration target seen by both 
sensors at the same time to find the cross-calibration: [5] uses 
a black circle as pattern, solving the alignment between the 
normals of the planes obtained from the detected ellipse in 
the 2D image and by the laser scanner; in[6], a vertical wall 
and a checkerboard pattern are used to solve a linear 
optimization problem using Levenberg-Marquardt algorithm; 
[7] uses triangular targets that are detected in both images and 
3D point clouds, and the cross-calibration is obtained using 
the Levenberg-Marquardt optimization algorithm, [8] utilizes 
a dark circle with empty interior, exploiting the reflectivity 
information from laser scanners; in [9] a checkerboard 
pattern and planar markers with different geometrical shaped 
holes are detected in both camera and LIDAR are correlated.  

The drawback of most methods is that they use a specific 
object, that is not available if we want to recalibrate, and they 
are time-consuming. The most obvious choice of features that 
appear in both images and 3D point clouds are the edges. In 
paper [10], the edges are matched using a weighted total 
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variation norm extracted from the fused depth image. [11] 
and [12] present different methods to detect sharp features in 
a point cloud based on Gauss map clustering, which can be 
further used to align the camera and the LIDAR.  

The problem of most calibration methods is that they 
cannot be applied for real time computer vision. In 
autonomous driving, having a fixed calibration is not a safe 
solution, as sensor drift can occur. Due to the interaction with 
the environment, the camera or the LIDAR can change their 
positions, making the cross-calibration improper. This can 
affect the accurate functioning of the system. To correct this, 
recalibration is needed, but it is not feasible, as it is time-
consuming and needs a specific environment. Therefore, it 
appears the need for online calibration, which can monitor 
and refine the extrinsic parameters during normal vehicle 
functioning conditions. In paper [13], the road, which is a flat 
surface, and an obstacle seen by both sensors are used to 
cross-calibrate the rotation between a stereo-camera and a 
laser scanner using MSAC to find the road plane and solving 
alignment between the point clouds obtained from both 
sensors. In [14], a fully automatic method for extrinsic 
calibration based on SLAM is presented. The system is 
composed of multi cameras fixed on a rotating rig, with little 
to no overlapping FOV, and requires no patterns. [15] 
presents a method to automatically calibrate the extrinsic 
parameters of a camera by using epipolar geometry.  The 
epipoles are used for a mono camera in a similar way they are 
used in stereo: by matching feature points from 2 consecutive 
shots. In [16], the goal is to detect in real-time the miss-
calibration between camera and LIDAR by superimposing 
edges from images and laser scanner. [17] uses the Renyi 
Quadratic Entropy to estimate the position of the sensors 
related to the vehicle frame.  

Our aim in this paper is to present an online cross-
calibration system, that is able to correct miss-calibrations 
during normal functioning of a vehicle. The rest of the paper 
is structured as follows: Section II presents the overall system 
design. Sections III, IV and V present the edge detection 
algorithm for camera and LIDAR and the online cross-
calibration method. Section VII presents how the extrinsic 
LIDAR calibration can be obtained. The last two sections are 
dedicated to experimental results and conclusions. 

II. SYSTEM DESIGN FOR ONLINE CROSS-CALIBRATION

Figure 2 illustrates the flow of the online cross-calibration 
algorithm. We first start with known cross-calibration 
parameters obtained from an offline method such as [4] or 
[18]. Next, as long as we have frames, we repeat a series of 
steps. First, detect edges from the 2D images using distance 
transform. Second, apply motion correction on LIDAR data 
to correct the representation of 3D points and eliminate errors 
caused by the speed of the car. Afterward, obtain a range 
image from the laser scanner, that will be further used to 
detect edges from the LIDAR data. The last step is to apply 
the online calibration algorithm – vary the 6 extrinsic 
parameters, translation on the 3 axes and rotation around x, y, 
and z axes. If we obtain a better value of the cost function, we 

update the cross-calibration parameters, if not, we continue 
with the same values, and repeat the steps.  

Figure 2. Design of the Online Cross-Calibration system 

Temporal synchronization between the two sensors is 
achieved by taking into reference the timestamps that the 
measurements get from the camera, the laser scanner, and the 
GPS. We use interpolation to obtain the exact image frame 
for the current point cloud, considering the time differences 
between consecutive frames. 

The offline cross-calibration between laser scanner and 
camera is found by placing a checkerboard calibration pattern 
in front of the camera and laser scanner in multiple positions 
and orientations. We can find the normal of the plane pattern 
in the images using Bouguet’s “Camera Calibration 
Toolbox”[19], by selecting multiple corner points from the 
checkerboard plane. To find the normal in the LIDAR 
dataset, we apply an RANSAC plane fitting procedure. These 
are used to solve a least square minimization problem to find 
the cross-calibration parameters, which are further refined 
using the Levenberg-Marquardt method. Details about this 
procedure can be found in [4]. 

What we bring new to the online cross-calibration, 
compared to existing methods, is the motion correction 
method. To understand this concept visually, think of a point 
cloud as being circular. In most algorithms or methods that 
use laser scanner data, all the points from a full point cloud 
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are considered to have been taken at the same moment, which 
is not true. In applications that require high accuracy, such as 
the problem of calibration, this preconception introduces 
important errors that render the system incapable of 
functioning. By applying a motion correction algorithm, the 
time stamp of each point is taken into consideration to adjust 
the position of the corresponding point, shifting points that 
have been taken at a later time forward. Thus, the dataset will 
no longer be a circle, but rather a spiral, with points from the 
beginning to the end having the same timestamp. We use the 
VICP algorithm [20] to correct the distortions from the laser 
scanner measurements, that appear due to the motion of the 
car or objects moving in the scene.  

In our method, we have two systems working together: 
the offline cross-calibration and the online cross-calibration. 
The first one is mandatory to find the initial calibration 
parameters, when the sensors are first placed on the car, and 
it is done only once. These initial values are used as input to 
the second system, which will run at all times during car 
driving since sensors can drift during the interaction with the 
surrounding environment. It is important to note that if the 
sensors’ position on the vehicle changes, we have to 
recalibrate using the offline method first, then monitor the 
calibration with the online method. We focus on the online 
cross-calibration system, with details about its 
implementation being presented in the next sections. 

III. CAMERA EDGE DETECTION

In this section, we focus on the edge detection algorithm 
for 2D images, which is the distance transform. The result of 
the transform is a grayscale image that looks similar to the 
input image, except that the intensities of points are changed 
to show the distance to the closest boundary from each 
point[21].  

We first obtain a grayscale image, in which each pixel 
takes the maximum value between the difference between it 
and its 8 neighbors. Next, we used the Chamfer based 
distance transform method, which requires scanning the 
binary image from two sides, making the computation very 
fast. The main steps of the algorithm are:  

1. Choose a 3x3 mask which is further decomposed into
two parts:

2. A double scan (first top-down, left-right and second
bottom-up, right-left) of the image (Figure 3), using
the previous masks, is required to update the distance
on the DT image.

First perform an initialization step, in which we 
compute the edges by updating each pixel to the 
maximum value between the difference between the 
current pixel and its 8 neighbors. Then we apply the 
update: 

Figure 3. Double scan using the decomposed mask 
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where ��������� ��
is wHV if the direction (k,l) is 
horizontal or vertical from the center of the mask, or 
wD if the direction is diagonal. The relationship 
between the 2 values should be �� 	 ��� � � ; in 
our implementation, we use the values wD= 7 and 
wHV= 5, because they give better visual results, as it 
can be seen in Figure 4. 

Figure 4. Distance Transform image result 

IV. LIDAR EDGE DETECTION

For detecting edges in 3D point clouds obtained from 
LIDAR readings, we follow two steps. The first step is to 
obtain the range image, which is a 2D representation of the 
laser scanner points with depth information. We use [22] to 
obtain the range image, denoted with !, which contains 
information about the point coordinates and the range data. 

 On the range image, we apply the second step, which is a 
filtering of points based on depth discontinuities. We denote 
a point from LIDAR with ", and its left and right neighbors 
with "�#$%, respectively "&'()%. We obtain the edges by taking 
into consideration the depth of the points and the relationship 
between neighbors as follows. The difference between 
neighbors is the maximum value of their depth discontinuity: * 	 �+,�"�#$% - "� "&'()% - "� .�/     (2) 

where 0 	 .121 Next, we filter after the depth of each 
point: 
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Where E is the new point cloud, composed of points that 
are situated on edges in the original 3D data. The values of 
0.26 and 0.5 were obtained after measurements, and are 
specific for the sensors we use in our system. The filtering 
after depth in 3D data is needed because, if we take into 
consideration only the neighbors, there would be a high 
density of edges at big distances, but the information from 
images is not detailed enough to be relevant. 

V. ONLINE CALIBRATION 
Given a cross-calibration matrix, we can project the laser 

points from the edge point cloud to the edge image, using the 
principles of pinhole camera projection. These projections 
will be used to infer a cost function which exploits the fact 
that we have a correct calibration if the edges from the 
LIDAR are correctly superimposed over edges from the 
image. We take the cost function as being the sum of the 
product between the information from the edges over the last 
w frames. 
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Where f denotes the current frame number, w is the 
number of frames used (window size), N is the number of 
projected LIDAR points on the 2D image, DT is the edge 
image, and E is the edge point cloud, from which we take 
only the current point with the range information. 

In order to determine the best calibration, we vary the 6 
parameters in the following way: we decrease them with a 
value, we let them constant, or we increase them with a value. 
Therefore, we will compute 729 values of the cost function, 
from which we will choose the maximum as being the best 
value of the calibration. The cost function is guaranteed to 
converge only if there is a small perturbation of the 6 
parameters, depending on the density of data provided by the 
laser scanner. When we obtain a better value for the cost, we 
update the calibration. 

The cost function will be optimized only if we start from 
correct cross-calibration parameter values, otherwise, it will 
never reach the optimum value. Therefore, we need a way to 
know when to stop updating if the new values only worsen 
the cross-calibration. A method would be to observe how the 
cost function changes when the 6 parameters are varied, for 
all possible variations. We use the miss-calibration detection 
from [16], which builds a Gaussian probability distribution 
over the varied values of the calibrations, and updates the 6 
cross-calibration parameters only when the probability of 
being correct is higher than a given threshold. This ensures 
that, when the two sensors are severely miss-aligned, the 
values of the calibration parameters will not be updated.  

Figure 5. Projection of LIDAR points on grayscale image obtained 
from the camera

Figure 6. Edges from LIDAR data projected on edges obtained 
applying distance transform 

VI. LIDAR EXTRINSIC CALIBRATION 

In our system, the calibration parameters can be generally 
denoted as Q�& 	 RS�&� T�&� U�&� V�&� W�&� 0�&X, where s represents 
the sensor, camera or LIDAR, and r is the reference 
coordinate system. The first 3 represent the translation vector, 
while the last 3 are used to compose the 3x3 rotation matrix. 

The camera has an intrinsic calibration matrix, composed 
of a rotation matrix and a translation vector, denoted: 

YZ' 	 [ !Z' �Z'
. . . \ ]           (5) 

where YZ'  means the transformation from camera 
coordinates to world coordinates, !Z'  is the rotation matrix, 
and �Z'  is the translation matrix. 

After applying the offline calibration algorithm, we 
obtain an extrinsic calibration matrix, which transforms 
points from camera coordinates to world coordinates, and is 
denoted as: 
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YẐ 	 [ !Ẑ �Ẑ
. . . \ ]               (6) 

After applying the cross-calibration, we obtain the 
transformation between laser scanner and camera, 
transferring the points from the LIDAR coordinate system in 
the coordinate system of the camera. 

Y_Z 	 [ !_Z �_Z
. . . \ ]          (7) 

We can obtain the extrinsic calibration matrix of the 
LIDAR relative to the world coordinate system: Y_̂ 	 YẐ � Y_Z                                (8) 

Therefore, if we know the extrinsic matrix of the camera 
relative to the world, and the extrinsic cross-calibration 
between the laser scanner and the camera, we can find the 
extrinsic calibration between the LIDAR and the world. 

VII. EXPERIMENTAL RESULTS

Our system is developed in C++, using the following 
libraries: PCL (Point Cloud Library), OpenCV, Boost, Qt, 
and Eigen. The hardware on which we ran the tests is Intel 
x64 processor, with the frequency of 4 GHz, and 64 GB RAM 
memory. The operating system is Windows 10.  

As sensors, we use a Velodyne VLP-16 sensor with 16 
layers of data oriented between -15 and +15 degrees 
vertically, covering a vertical field of view of 30 degrees. The 
sensor covers a 360-degree horizontal FOV, while spinning 
at 10 Hz, and provides 300.000 points per second. It can 
cover a distance up to 100m, with an error of -/+3cm. The 
camera is JAI BM 141GE, that gives monochrome images. 
The coordinate systems of the world and the two sensors have 
the z-axis pointing forward, the x-axis – to the right and the 
y-axis – to the ground. 

We performed experiments to determine the speed and 
accuracy of our algorithm. The algorithm running time is 
between 16ms for one frame and 90ms for 9 frames, the most 
time-consuming part being the grid search step. To track the 
miss-calibration correction, we have randomly altered the 6 
extrinsic calibration parameters with noise, and compared the 
obtained values with the ground truth cross-calibration, 
which is known from the offline algorithm. Each translation 
parameter was modified with values between 1 and 2cm, and 
each rotation value was altered with up to 2 degrees, which 
are quite noticeable. Higher offsets would lead to having a 
low probability that the calibration is correct, which is 
computed in the miss-calibration step, therefore they would 
not be updated and the car should be stopped. The 
experiments were performed on a 1.900 frame log, in which 
we have variation in the speed of the car, pedestrians moving, 
and cars coming from the opposite direction. As metrics, we 
use the Mean Squared Error (MSE) between the values of the 
cross-calibration obtained from the offline method, which is 
considered the ground truth, and the values obtained from the 
online cross-calibration method. 

From the plots with the variations of the 3 translation 
parameters and 3 rotation parameters, we can observe the 
errors we obtain for each of the 6 cross-calibration parameters 
when we vary the number of frames. The biggest variations 
can be observed for the translation on the z-axis and for the � 
angle, from which we can notice where we obtain high or low 
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errors, depending on the window size. This was used to 
decide on the optimal number of frames to be applied to the 
online cross-calibration algorithm, in such a way that the 
error between the ground truth and the refined result is 
minimized.  

The error decreases when using more frames, the lowest 
error of 0.007 being obtained when having a window of 9 
frames, as seen in the plot of MSE. The only downside is the 
computation time, which is quite high for such an application. 
Therefore, we choose to use 4 as the number of frames for the 
online cross-calibration algorithm, because it gives a low 
error and the average computation time is 30ms.  

In Figure 7, the 3D points obtained from the laser scanner 
are projected onto the 2D image, with noise added to the 
cross-calibration between the camera and the LIDAR. After 
applying our online cross-calibration algorithm, we can 
successfully refine the calibration parameters and correct 
them; the result can be seen in Figure 8. 

Figure 7. Miss-calibrated projection of LIDAR data on image 

Figure 8. Corrected cross-calibration and projection of LIDAR 
data on image 

In Table 1, from the results obtained in the miss-
calibration tracking, it can be seen that our implementation 
has a higher degree of accuracy than other existing methods. 
We don’t obtain an improvement when refining the 
translation on the y-axis, which is vertical because the laser 
scanner we use has only 16 layers; this gives a low density of 
points on the vertical edges, compared to the information 
obtained from edges in an image, which is dense. 

Table 1. Online cross-calibration results 

Paper 
Translation (m) Rotation (degrees) 

x y z � � � 
[23] 0.0045 0.0052 0.0046 0.38 0.39 0.44 
[16] 0.02 0.014 0.006 0.672 0.628 0.476 
[6] 0.305 -0.005 -0.426 -0.15 0 0.27 
Our 

system 0.002 0.015 -0.005 -0.016 0.002 0.01 
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The cross-calibration algorithm can also be used to refine 
the results of an offline calibration algorithm, even when the 
sensors’ position doesn’t change, being able to correct small 
mistakes. In Figure 9, we have plotted the errors between the 
online and offline cross-calibration methods, when no noise 
has been added to the sensors’ readings. The offline method 
has high errors for two rotation parameters, which are 
corrected with the online method. 

Figure 9. Offline cross-calibration correction 

VIII. CONCLUSIONS

This work presents a new online solution for the cross-
calibration of camera and LIDAR. Our system can detect 
miss-calibrations if sensor drift occurs during vehicle 
functioning. We are able to correct the cross-calibration 
between the camera and LIDAR, and also extract the 
extrinsic calibration parameters of LIDAR. We have obtained 
better results than previous existing cross-calibration 
methods, as seen in section VII because the most important 
improvement we bring is the usage of a motion correction 
algorithm, which eliminates distortions from the laser 
scanner that come from vehicle motion or objects moving in 
the scene. We also create a range image that is an organized 
representation of the 3D point cloud. By fusing the two 
sensors, camera, and LIDAR, we obtain a 2D image 
containing range information. The experimental results 
demonstrate that our solution is able to run in real time, which 
makes our online cross-calibration algorithm a convenient 
component of a driving assistance solution.  
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